

Application of a Wave Field Synthesis (WFS) AudioSystem based on A²B protocol: a case study

Antonella Bevilacqua¹; Lamberto Tronchin²; Marco Binelli¹; Lorenzo Chiesi¹; Nicholas Rocchi¹; Daniel Pinardi¹; Andrea Toscani¹; Angelo Farina¹

¹University of Parma, Italy

² University of Bologna, Italy Corresponding authors: <u>antonella.bevilacqua@unipr.it</u> - <u>lamberto.tronchin@unibo.it</u>

ABSTRACT

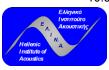
Wave Field Synthesis systems have been developed with the aim of controlling the sound field in a large area rather than in a small sweet spot, as it happens for traditional solutions. This capability comes at the price of a much greater number of loudspeakers, thus making them suitable for fixed installations only. This paper presents a WFS system based on A^2B 8-channel soundbars, resulting in a flexible, portable, and re-configurable solution, thus solving the previously described problem.

Keywords - A2B bus; Spatial Audio Listening Room; Wave Field Synthesis

1. INTRODUCTION

In recent decades, spatial audio playback systems have been extensively studied due to the interest of increasing the immersivity of a variety of experiences, such as teleconferencing, video games for eSports, driving simulators, theme parks and movies and home entertainment. Traditional solutions, such as stereo, Stereo Dipole or Ambisonics, deliver an immersive audio experience in a single position, namely sweet spot.

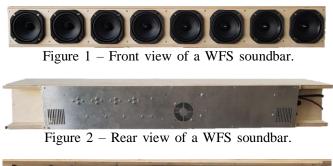
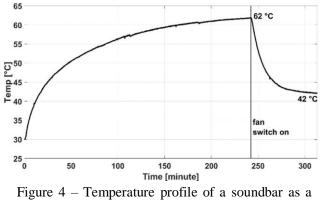
This paper deals with the design and the installation of a WFS system [1], which overcomes the above limitation. The system is composed by 20 soundbars, each 1 m long and equipped with 8 loudspeakers, for a total number of 160 loudspeakers. Each soundbar is provided with its own power supply and an 8-ch, class-D power amplifier. The audio signals are delivered to the power amplifiers through a digital bus developed by Analog Devices, the Automotive Audio Bus (A^2B) [2], which provides optimal features for multichannel audio systems [3]. Such solution has several advantages: a huge dynamic range (thanks to the 24-bits resolution), a latency of just 2 samples (50 µs at 48 kHz), 32 synchronized signals on a single bus line with very small jitter [4]. Furthermore, thanks to the low cost of the A^2B chips and the capability of carrying the signals over Unshielded Twisted Pairs (UTP), the cost of electronics and cabling is significantly reduced, especially if compared to analogue solutions, which require digital-toanalogue converters (DAC) and long power cables or audio-over-IP solutions.

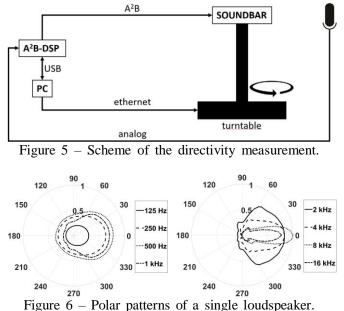

2. A²B SOUNDBARS FOR A WFS SYSTEM

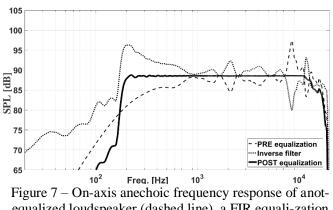
A computer feeds the soundtracks of the WFS system through an RME MADIFace XT interface, capable of supporting up to 192 channels at 48 kHz on a USB3 connection. This audio interface provides three MADI connections, two optical and one coaxial. Each MADI connection carries 64 channels, and it is connected to a custom electronic board, named A²B-DSP, which delivers the audio signals to the power amplifiers over A²B bus. Each A²B-DSP board receives one MADI stream and feeds two A²B networks, carrying 32 signals each, which is currently the maximum number of channels supported on a single A²B bus. Finally, on every A²B bus four 8-channels active soundbars are connected in daisy-chain [5]. Since 20 soundbars have been built for this system, it will be possible in the future to expand the system with 4 additional soundbars, reaching the maximum capability of 192 channels.

The soundbars (Figures 1, 2, 3) are made of a birch wood frame and an aluminium plate on the back, for housing the power amplifier (based on the chip TAS3251), power supply (200 W) and connectors. Each soundbar has dimensions $100 \times 19 \times 14$ cm (L×W×H) and a total weight of 10.5 Kg. Each of the 8 loudspeakers has its own separate volume of 1.2 litres. With the aim of reducing the standing waves inside the enclosures, they are partially filled with polyester fibre and the rear side of the frame is tilted by an angle of 10° for making the cavity not rectangular. The loudspeakers have an inter-axis distance of 125 mm, resulting in an aliasing frequency of 2.7 kHz (on-axis) and approximately 1.8 kHz 10.58874/SAAT.2022.197

at 30° [6]. The transducers are 4" full-range woofers by RCF, having a nominal impedance of 8 ohm and a sensitivity of 92 dB @ 1 W, 1 m. In Figure 3, it is possible to note the "pass-through" power supply and A^2B lines, allowing the soundbars to be easily daisy-chained with short patch cables.


Figure 3 - Interiors of the electronics compartment.


A stress test was carried out to define the temperature profile of the soundbar (Figure 4). A white noise signal was played through a soundbar continuously for four hours at 100 W_{rms}. The temperature raised up to $62 \,^{\circ}$ C against a room temperature of 26 $\,^{\circ}$ C. Then, the rear fan mounted in the electronics housing was switched on, and the temperature dropped to 42 $\,^{\circ}$ C in 1h 30'.

function of time.

A test on the directivity was performed. The soundbar was mounted on a turntable controlled by a PC, in front of an omnidirectional measurement microphone (Bruel&Kjaer, type 4189) located at 1 m distance (Figure 5). An Exponential Sine Sweep (ESS) [7], was played through each loudspeaker, one at a time, for each measurement direction. A total number of 72 directions were measured, by rotating the soundbar with an angular resolution of 5°, from 0° to 355°. Finally, the impulse responses (IRs) were obtained, by means of the deconvolution with the inverse-ESS. One of the eight resulting sets of polar patterns is shown in Figure 6. Using an advanced signal processing algorithm, namely Kirkeby matrix inversion, it is possible to calculate speaker equalization filters or synthesize a target directivity [8]. The digital equalization filter allows for a reasonably flat on-axis frequency response, as shown in Figure 7, and it is implemented in real time by FIR filters operated by the DSP units embedded in the A²B-DSP interface.

equalized loudspeaker (dashed line), a FIR equali-zation filter (dotted line) and the equalized loudspea- ker (solid line).

Finally, the maximum sound pressure level (SPL) produced by a soundbar was measured with an omnidirectional microphone (B&K 4189), located on-axis at 1 m distance. A value of 108 dB(A) was obtained, with all the 8 loudspeakers playing a 1 kHz pure tone at the maximum power.

3. GEOMETRICAL CONFIGURATION

The WFS system was assembled in a square configuration. By exploiting the modularity of the solution, corners have been tilted by 45° , thus significantly reducing the edge effects. The inner area of the system in its maximum configuration is 5.4×5.4 m, for a capacity up to 28 seats, as shown in Figure 8.

PROCEEDINGS of the 2nd Symposium: The Acoustics of Ancient Theatres 6-8 July 2022 Verona, Italy

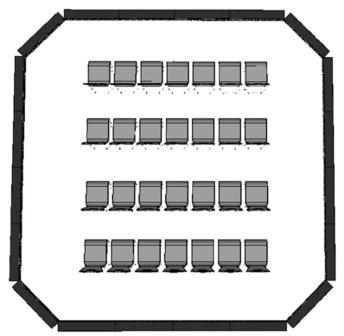


Figure 8 – Soundbars disposition for this case study.

In the facility of the Bologna Creative Hub, Italy, 18 of the 20 soundbars have been installed. A panoramic picture of the system, taken with a 360° camera, is shown in Figure 9.

Figure 9 – 360° view of the WFS system installed at Bologna Creative Hub.

4. SOFTWARE

For generating in real-time the large number of signals necessary for feeding the WFS system, a novel software tool has been developed. It is a VST plugin, called WFSmixer, which allows rendering in real time up to 32 virtual sound sources. Each source can be placed in an arbitrary position, or it can be "animated" with a combination of translational and rotational motion units.

The plugin, developed using Juce application framework, has been built for both Windows-64 and Mac OS systems, and runs smoothly under multichannel host programs capable of high channel counts, such as Plogue Bidule or MaxMSP. The geometry of the loudspeaker array is loaded from a spreadsheet file, containing the XY coordinates of the loudspeakers. Figure 10 shows the Graphical User Interface (GUI) of the WFSmixer plugin.

Figure 10 – GUI of the WFSmixer plugin.

5. CONCLUSIONS

This paper deals with the implementation of a modular, reconfigurable, and portable WFS system. Such characteristics have been reached by developing 8channel active soundbars and adopting the A^2B bus, which allows connecting the soundbars in daisy-chain. Moreover, an A^2B , full-digital solution allowed for a considerably cost reduction.

The final installation was carried out in the facility of the Bologna Creative Hub, where the presented WFS system is now operating and available to composers and artists.

ACKNOWLEDGMENTS

This work was financially supported by Regione Emilia Romagna under EU Commission, project SIPARIO, CUP E91B18000440007, POR-FESR Azione 1.1.2, 2014-20, n. PG/2018/632038.

6. REFERENCES

- D. De Vries, L. Horchens, P. Grond, "Extraction of 3D information from circular array measurements for auralization with Wave Field Synthesis", EURASIP Journal on Advances in Signal Processing, 13416, 2007.
- [2] M. Kessler. Introducing the Automotive Audio bus. AES Conference on Automotive Audio, Burlingame, San Francisco, 2017.
- [3] D. Pinardi et al., "An Innovative Architecture of Full-Digital Microphone Arrays Over A²B Network for Consumer Electronics," in *IEEE Transactions on Consumer Electronics*, vol. 68, no. 3, pp. 200-208, Aug. 2022, doi: 10.1109/TCE.2022.3187453.
- [4] N. Rocchi, A. Toscani, G. Chiorboli, D. Pinardi, M. Binelli and A. Farina, "Transducer Arrays Over A²B Networks in Industrial and Automotive Applications: Clock Propagation Measurements," in *IEEE Access*, vol. 9, pp. 118232-118241, 2021, doi: 10.1109/ACCESS.2021.3106710.
- [5] N. Rocchi et al., "A Modular, Low Latency, A2B-based Architecture for Distributed Multichannel Full-Digital Audio Systems," 2021 Immersive and 3D Audio: from Architecture to Automotive (I3DA), 2021, pp. 1-8, doi: 10.1109/I3DA48870.2021.9610947.
- [6] T. Caulkins, E. Corteel, O. Warusfel, "Synthesizing realistic sound sources in WFS installations", submitted to DAFX04, Napoli, October 2004.

- [7] A. Farina, "Simultaneous measurement of impulse response and distortion with a swept-sine technique", 108th AES Convention, 2000.
- [8] H. Tokuno, O. Kirkeby, P. A. Nelson and H. Hamada. "Inverse filter of sound reproduction systems using regularization" IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, Vols. E80-A, no. 5, pp. 809 - 820, 1997.